Электронная библиотека

  • Для связи с нами пишите на admin@kursak.net
    • Обратная связь
  • меню
    • Автореферат (88)
    • Архитектура (159)
    • Астрономия (99)
    • Биология (768)
    • Ветеринарная медицина (59)
    • География (346)
    • Геодезия, геология (240)
    • Законодательство и право (712)
    • Искусство, Культура,Религия (668)
    • История (1 078)
    • Компьютеры, Программирование (413)
    • Литература (408)
    • Математика (177)
    • Медицина (921)
    • Охрана природы, Экология (272)
    • Педагогика (497)
    • Пищевые продукты (82)
    • Политология, Политистория (258)
    • Промышленность и Производство (373)
    • Психология, Общение, Человек (677)
    • Радиоэлектроника (71)
    • Разное (1 245)
    • Сельское хозяйство (428)
    • Социология (321)
    • Таможня, Налоги (174)
    • Физика (182)
    • Философия (411)
    • Химия (413)
    • Экономика и Финансы (839)
    • Экскурсии и туризм (29)

Принципы воспроизводства живых систем

Биологические полимеры – белки

Среди органических веществ клетки белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50 % сухой массы клетки. В организме человека встречаются 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения они построены всего из 20 различных аминокислот (рис  ).

 

Аминокислоты имеют общий план строения. Вставить рис. Захаров стр.91

В левой части молекулы расположена группа Н2N –, которая обладает свойствами основания; справа – группа СООН – кислотная, характерная для всех органических кислот. Следовательно, аминокислоты – амфотерные соединения, совмещающие свойства и кислоты и основания.  Этим обусловлена их способность взаимодействовать друг с другом. Соединяясь, молекулы аминокислот образуют связи между углеродом кислотной и азотом

основной группы. Такие связи называются ковалентными, а в данном случае пептидными связями:рис. Захаров 91 стр

Соединение двух аминокислот в одну молекулу называют дипептидом, трех аминокислот – трипептидом и т.д., а соединение из 20 и более аминокислотных остатков – полипептидом.

Аминокислоты имеют общий план строения, но отличаются друг от друга по строению радикала (R), которое весьма разнообразно. Например, у аминокислоты аланина радикал простой – СН3, радикал цистеина содержит серу – СН2SH, другие аминокислоты имеют более сложные радикалы.

Белки, выделенные из живых организмов животных, растений и микроорганизмов, включают несколько сотен, а иногда и тысяч комбинаций 20 основных аминокислот.image004

Рис. 19. 20 аминокислот, входящих в состав природных белков

 

Порядок их чередования самый разнообразный, что делает возможным существование огромного числа молекул белка, отличающихся друг от друга. Например, для белка, состоящего всего из 20 остатков аминокислот, теоретически возможно около 2 · 1018 вариантов, отличающихся чередованием аминокислот, а значит, и свойствами различных белковых молекул.

Уровни организации белковой молекулы

1). Первичная. Аминокислоты соединены пептидной связью в линейной последовательности.

 

ЛИЗ-

ГЛУ -

ТРЕ -

АЛА -

АЛА -

АЛА -

ЛИЗ -

ФЕН -

ГЛУ -

АРГ -

ГЛН -

ГИС -

МЕТ -

АСП -

СЕР -

СЕР -

ТРЕ -

СЕР -

АЛА -

АЛА -

СЕР -

СЕР-

СЕР -

АСН -

ТИР -

ЦИС -

АСН -

ГЛУ -

Однако молекула белка в виде цепи аминокислотных остатков еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация.

2). Вторичная структура возникает в результате образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот. В результате этого белковая молекула принимает вид спирали (a – структура) или вид складчатого слоя – «гармошка» (b – структура). Но и ее часто недостаточно для приобретения характерной биологической активности.

 

image005

3). Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или S – S, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает форму шарика, или глобулы. Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке.image006

Рис. 21. Третичная

4). Некоторые белки для осуществления некоторых функций организма имеют четвертичную структуру, с более высоким уровнем организации. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого такого сложного белка – гемоглобин. Его молекула состоит из четырех связанных между собой молекул. (рис. 22). Другим примером может служить гормон поджелудочной железы – инсулин, включающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъединиц и разнообразные небелковые компоненты. Тот же гемоглобин содержит гетероциклическое соединение, в состав которого входит железо.image007

Рис. 22. Четвертичная

Свойства белка

          Белки обладают рядом физико – химических свойств, вытекающих из их структурной организации. Это определяет функциональную активность каждой молекулы.

Белки – водорастворимые молекулы, могут проявлять свою функциональную активность только в водных растворах.

Белковые молекулы несут большой поверхностный заряд. Это определяет целый ряд электрохимических эффектов, например, изменение проницаемости мембран каталитической активности и других функций.

Белки термолабильны, т.е. проявляют свою активность в узких температурных рамках.

Действие повышенной температуры, а также обезвоживание, изменение РН и другие воздействия вызывают разрушение структурной организации белков. Вначале разрушается самая слабая структура – четвертичная, затем третичная, вторичная и при более жестких условиях – первичная. Утрата белковой молекулой своей структурной организации называется денатурацией.

Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренатурации (рис. 23).

Белки выполняют в организме чрезвычайно важные функции:

1. Каталитическая или ферментативная: все биологические катализаторы – ферменты – вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз. Им свойственны все законы катализа. Однако неорганический катализатор может применяться во многих различных производствах. Фермент  же катализирует только одну реакцию или один вид реакций, т.е. более специфичен, чем неорганический катализатор. Фермент и реагент комплементарны друг к другу по принципу соответствия пространственных конфигураций молекул (принцип «ключ – замок»).

Рис 3.3. стр. 96 Захаров

Температура всегда влияет на скорость химических реакций. Большинство реакций с неорганическими катализаторами идет при очень высоких температурах. При повышении температуры скорость реакции, как правило, увеличивается. Для ферментативных реакций это увеличение ограничено определенной (оптимальной) температурой.

рис. 3.4. СТР. 97 Захаров

Дальнейшее повышение температуры вызывает изменение в структуре молекула фермента, ее активность снижается, а затем прекращается. Для большинства ферментов температурный оптимум близок 35 – 400 С.

Ферменты активны только при физиологических значениях кислотности раствора, только при такой концентрации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или системы.

Реакции с участием неорганических катализаторов протекают  при высоких давлениях, а ферменты работают при нормальном (атмосферном) давлении.

И самое важное отличие ферментов от других катализаторов то, что скорость реакций, катализируемых ферментами, в десятки тысяч, а иногда и в миллионы раз выше той скорости, которая может быть достигнута при участии неорганических катализаторов.

Пероксид водорода без катализаторов разлагается медленно: РИС. Захаров стр.97

В присутствии неорганического катализатора (солей железа) эта реакция идет несколько быстрее. А каталаза (фермент, имеющийся практически во всех клетках) разрушает пероксид водорода с невероятной скоростью: одна молекула каталазы расщепляет в 1 мин. более 5 млн. молекул Н2О2. Биологические катализаторы уменьшают энергию активации – ту энергию, которую необходимо сообщить реагирующим молекулам в момент их взаимодействия, чтобы реакция стала возможной.

2. Строительная (пластическая) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур.

3. Транспортная функция белков заключается в присоединении химических элементов (например, кислорода гемоглобином) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. Специфические транспортные белки перемещают РНК, синтезированные в клеточном ядре, в цитоплазму. Широко представлены транспортные белки в наружных мембранах клеток; они переносят различные вещества из окружающей среды в цитоплазму.

4. Защитная функция: при поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах – лейкоцитах образуются особые белки – антитела. Они связываются с несвойственными организму веществами (антигенами) по принципу соответствия пространственных конфигураций молекул (принцип – «ключ – замок»). В результате этого образуется безвредный, нетоксичный комплекс – «антиген – антитело», который в последствие фагоцитируется и переваривается другими формами лейкоцитов.

5. Регуляторная функция: регуляторные белки участвуют в обмене веществ. Инсулин ре­гулирует обмен глюкозы. Соматотропин (гормон роста) регулирует рост костей, гистоны (белки, соединенные с ДНК) – генную активность.

6. Пищеварительная функция: пищеварительные белки питают зародыш на ранних стадиях развития и запасают биологически ценные вещества: ферритин запасает железо в селезенке.

7. Двигательная функция: сократительные белки обеспечивают движение клеток; внутриклеточных структур. Например, миозин – сокращение мышечного волокна; тубулин – растяжение хромосом к по­люсам клетки.

8. Энергетическая функция: при полном расщеплении 1 г белка образуется 17,6 кДж энергии. Однако белки в таком качестве используются редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, участвуют в реакциях пластического обмена для построения новых белков.

image009

 

Органические молекулы – углеводы

 

Углеводы, или сахариды – органические вещества с общей формулой Сn(H2 О)m.У большинства углеводов число молекул воды вдвое превышает количество атомов углерода. Поэтому эти вещества и были названы углеводами.

В животной клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5%. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90% сухой массы (клубни картофеля, семена и т.д.). Углеводы бывают простыми и сложными.

Простые углеводы называются моносахаридами. В зависимости от числа атомов углерода в молекуле моносахариды называются триозами – 3 атома, тетрозами – 4, пентозами – 5 или гексозами – 6 атомов углерода. Из шестиуглеродных моносахаридов – гексоз – наиболее важны глюкоза, фруктоза и газоктоза. Глюкоза содержится в крови (0,08-0,12). Пентозы – рибоза и дезоксирибоза – входят в состав нуклеиновых кислот и АТФ.

Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. К дисахаридам относится пищевой сахар – сахароза, получаемый из тростника или сахарной свеклы, который состоит из одной молекулы глюкозы и одной молекулы фруктозы, и молочный сахар, образуемый молекулами глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономерами таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Полисахариды, как правило, – разветвленные полимеры.

Углеводы выполняют две основные функции: строительную и энергетическую. Например, целлюлоза образует стенки растительных клеток; сложный полисахарид хитин – главный структурный компонент наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов.

Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г углеводов освобождается 17,6 кДж. Крахмал у растений и гликоген у животных, откладываясь в клетках, служат энергетическим резервом.

Органические молекулы – жиры и липоиды

Жиры (липиды) представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде, они гидрофобны (от греч. gуdor – вода и phobos – страх). В клетках всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами.

Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках жировой ткани количество жира возрастает до90%. Накапливаясь в клетках жировой ткани животных, в семенах и плодах растений, жир служит запасным источником энергии.

Важная роль жиров и как растворителей гидрофобных органических соединений, необходимых для нормального протекания биохимических превращений в организме.

Жиры и липоиды выполняют и строительную функцию, они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен выполнять функцию теплоизолятора. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м.

Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г жиров до СО2  и Н2 О освобождается большое количество энергии – 38,9 кДж.

Образование некоторых липоидов предшествует синтезу ряда гормонов, например, гормонов коры надпочечников. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

 

Биологические полимеры – нуклеиновые кислоты

 

Нуклеиновые кислоты – природные органические высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Нуклеиновые кислоты – это ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Они были открыты в 1869 году  Ф. Мишером в ядрах лейкоцитов и названы нуклеиновыми, т.к. ядро – нуклеус (nucleus).

ДНК

         Биополимер, мономером которого является нуклеотид. ДНК – полинуклеотид с очень большой молекулярной массой. В одну молекулу могут входить 108 и более нуклеотидов. В состав  нуклеотида входит  пятиатомный сахар дезоксирибоза, остаток фосфорной кислоты и одно азотистое основание. Азотистых оснований всего четыре – это аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). Таким образом, нуклеотидов всего четыре: адениновый, гуаниновый, цитозиновый и тиминовый (рис. 13).image010

Рис. 13. Схема строения ДНК

Порядок чередования нуклеотидов в ДНК у разных организмов разный.

В 1953 году Д. Уотсон и Ф. Крик построили пространственную модель ДНК. Этому открытию способствовали два экспериментальных дос­тижения:

1) Чаргафф получил чистые образцы ДНК и сделал анализ относительно числа оснований в каждом образце. Оказалось, что из какого бы организма не была выделена ДНК количество аденина равно количеству тимина    (А = Т), а количество гуанина равно количеству цитозина (Г = Ц);

2) Уилкинс и Фрэнклин при помощи рентгенограммы получили хороший снимок ДНК (рис. 15).

 

            Молекула ДНК состоит из двух соединенных друг с другом цепей и походит на веревочную лестницу (рис. 14). Боковые стороны лестницы закруче­ны наподобие электрических проводов. Боковые стороны – это череду­ющийся сахар и фосфорная кислота. Перекладинами этой лестницы являются азотистые основания, соединенные по принципу комплементарности (А = Т; Г = Ц). Между аденином и тимином двойная водородная связь, гуанином и цитозином тройная.

Ширина двойной спирали – 1,7 нм, в один виток входит по 10 пар оснований, длина витка – 3,4 нм, между нуклеотидами расстояние = 0,34нм. При соединении с определенными белками – гистонами – степень спирализации молекулы повышается. Молекула утолщается и укорачивается. В дальнейшем спирализация достигает максимума, возникает спираль еще более высокого уровня – суперспираль. При этом молекула становится различима в световой микроскоп как вытянутое, хорошо окрашиваемое тельце – хромосома.

Синтез ДHK

ДНК входит в состав хромосом (комплекс ДНК с белком гистоном составляет 90 % хромосомы.        Встает вопрос, почему после деления клетки количество хромосом не уменьшается, а остается таким же. Потому что перед делением клетки, происходит удвоение (синтез) ДНК, а, следовательно, и удво­ение хромосом. Под воздействием фермента нуклеазы происходит разрыв водородных связей между азотистыми основаниями на определенном участке ДНК и двойная цепочка ДНК начинает раскручиваться, одна цепь отходит от другой. Из свободных нуклеотидов, которые на­ходятся в ядре клетки под действием фермента ДНК-полимеразы строятся комплементарные нити. Каждая из разделившихся парных ни­тей молекулы ДНК служат матрицей для образования около неё другой комплементарной её нити. Затем каждая прежняя (материнская) и но­вая (дочерняя) нити вновь закручиваются в виде спирали. В резу­льтате образуются две новые совершенно одинаковые двойные спирали (рис. 16).

Способность к воспроизведению является очень важной особенностью молекулы ДНК.

Функция ДНК в клетке

Дезоксирибонуклеиновая кислота выполняет чрезвычайно важные функции, необходимые как для поддержания, так и воспроизведения жизни.

Во – первых, –  это хранение наследственной информации, которая заключена в последовательности нуклеотидов одной из ее цепей. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида – триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность аминокислот в белковой молекуле. Расположенные друг за другом триплеты, обусловливающие структуру одной полипептидной цепи, представляют собой ген.

Вторая функция ДНК – передача наследственной информации из поколения в поколение. Она осуществляется благодаря редупликации (удвоения) материнской молекулы и последующего распределения дочерних молекул между клетками – потомками. Именно двухцепочечная структура молекул ДНК определяет возможность образования абсолютно идентичных дочерних молекул при редупликации.

Наконец, ДНК участвует в качестве матрицы в процессе передачи генетической информации из ядра в цитоплазму к месту синтеза белка. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируется молекула информационной РНК.

РНК

  РНК – так же, как ДНК представляет собой биополимер (полинуклеотид), мономерами которого являются нуклеотиды (рис. 17). Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (аденин, гуанин, цитозин), четвертое – урацил – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат другую пентозу – рибозу (вместо дезоксирибозы). По структуре различают двухцепочечные и одноцепочечные РНК. Двухцепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом.

РНК переносят информацию о последовательности аминокислот в белках, т.е. о структуре белков, от хромосом к месту их синтеза, и участвуют в синтезе белков.

Существует несколько видов одноцепочечных РНК. Их названия обусловлены выполняемой функцией и местонахождением в клетке. Все виды РНК синтезируются на ДНК, которая служит матрицей.

1. Транспортная РНК ( т-РНК) Самая маленькая, в состав входит 76 – 85 нуклеотидов. Имеет вид клеверного листочка, на длинном конце которого находится триплет нуклеотидов (АЦЦ), куда присоединяются активированная аминокислота. На коротком конце находится азотистое основание – гуанин, он не дает разрушаться т-РНК. На противоположном конце находится антикодон, который строго комплементарен генетическому коду на информационной РНК. Основная функция  т-РНК – это перенос аминокислот к месту синтеза белка. Из общего содержания РНК в клетке на долю т-РНК приходится 10 %.

            2. Рибосомальная РНК (р-РНК) содержаться в рибосомах, состоят от 3 – 5 тыс. нуклеотидов. Из общего содержания РНК в клетке на долю р-РНК приходится 90 %.

3. Информационная (и-РНК) или матричная (м-РНК). Содержится в ядре и в цитоплазме, молекулы информационной РНК могут состоять из 300 – 30000 нуклеотидов. Функция её состоит в переносе информации о первичной структуре белка в рибосомы. На долю и-РНК приходится 0,5 – 1 % от общего содержания РНК клетки.

Генетический код

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.image015

Свойства генетического кода

1. Код триплетен. Это означает, что каждая из аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Так, аминокислоте цистеину соответствует триплет АЦА, валину – ЦАА, лизину – ТТТ (рис.).

2 Код вырожден. Всего генетических кодов 64, в то время как кодируется 20 аминокислот, когда они идут на и-РНК синтез белка прекращается. Каждая аминокислота шифруется несколькими генетическими кодами, исключение составляют метионин и триптофан. Эта избыточность кода имеет большое значение для повышения надежности передачи генетической информации. Например, аминокислоте аргинину могут соответствовать триплеты ГЦА, ГЦТ, ГЦЦ и т.д. Понятно, что случайная замена третьего нуклеотида в этих триплетах никак не отразиться на структуре синтезируемого белка.

3. Код универсален. Генетический код один для всех живущих на Земле существ (для человека, животных, растений, бактерий и грибов).

4. Генетический код непрерывный. Нуклеотиды в ДНК не наползают друг на друга, между триплетами (кодонами) отсутствуют пробелы и знаки препинания. Каким же образом участок молекулы ДНК, несущей информацию о структуре одного белка, отграничивается от других участков? Существуют триплеты, функцией которых является запуск синтеза полинуклеотидной цепочки, и триплеты (вставить), которые прекращают синтез.

5. Генетический код специфичный. Нет случаев, когда один и тот жетриплет соответствовал бы более чем одной аминокислоте.

Биосинтез белка в клетке

Биосинтез белков в клетке состоит из двух этапов:

1. Транскрипция.

         2. Трансляция.

1. Транскрипция – это переписывание информации о первичной структуре белка с определенного участка ДНК (гена) на и-РНК по принципу комплементарности при помощи фермента РНК – полимеразы.

 Считывание наследственной информации начинается с определенного участка ДНК, который называется промотор. Он располагается перед геном и включает около 80 нуклеотидов. Фермент РНК – полимераза узнает промотор, прочно с ним связывается и расплавляет его, разъединяя, нуклеотиды комплементарных цепей ДНК, затем этот фермент начинает двигаться вдоль гена и по мере разъединения цепей ДНК на одной из них, которая называется смысловой, синтезируется и-РНК. Готовая и-РНК через поры ядерной оболочки выходит в цитоплазму и пронизывает малую субъединицу рибосомы, а те участки гена, на которых полимераза образовала и-РНК, вновь закручиваются в спираль, и-РНК может пронизывать сразу несколько рибо­сом и этот комплекс называется полисома. В цитоплазме аминокислоты активизируются ферментом аминоацил-т-синтетаза и присоединяются к длинному концу т-РНК (рис.24).                                     Рис. 24. Механизм транскрипции

         2. Трансляция - это перевод наследственной информации с языка нуклеотидов на язык аминокислот.

image016

Трансляция начинается со стартового кодона АУГ, к которому своим антикодоном УАЦ присоединяется нагруженная метионином т-РНК. В большой субъединице рибосомы имеется аминоацильный и пептидильный центры. Сначала I амино­кислота (метионин) попадает в аминоацильный центр, а затем вместе со своей т-РНК перемешается в пептидильный центр. Аминоацильный центр освобождается и может при­нять следующую т-РНК со своей аминокислотой. Вторая т-РНК, нагруженная    2-ой аминокислотой, поступает в большую субъединицу рибосомы и своим антикодоном соединяется с комплементарным кодоном и-РНК. Сразу же при помощи фермента пептидил – трансферазы предшествующая аминокислота своей карбоксильной группой (СООН) соединяется с аминогруппой (NH2) вновь пришедшей аминокислоты.

Между ними образуется пептидная связь  (-CO-NH-). В результате т-РНК, принесшая метионин, освобождается, а в аминоацильном центре к т-РНК присоединяются две аминокислоты (дипептид). Для дальнейшего процесса роста полипептидной цепи требуется освободить аминоацильный центр. Большая и малая субъединица рибосомы прокручивается относительно друг друга (по типу завода часов) триплет нуклеотидов на и-РНК продвигается вперед, на его место становится следующий триплет нуклеотидов. В освободившийся аминоацильный центр следующая т-РНК приносит в соответствии с кодономи и-РНК аминокислоту, которая при помощи пептидной связи соединяется с предыдущей, а вторая т-РНК уходит из рибосомы. Далее рибосома снова продвигается на один кодон и процесс повторяется. Происходит последовательное присоединение аминокислот к полипептидной цепи в строгом соответствии с последовательностью колонов на и-РНК.

Когда на рибосоме оказывается один из триплетов (УАА, УАГ, УГА) ни одна т-РНК не может занять место в аминоацильном центре, т.е. не существует антикодонов комплементарных этим генетическим кодам, поэтому синтез белков завершается. Синтезированные из аминокислот полипептидные цепи в дальнейшем поступают в комплекс Гольджи, где возникают вторичная, третичная, четвертичная структуры белка. Здесь же формируются комплексы белковых молекул с углеводами и жирами. Весь процесс биосинтеза белка представляется в виде схемы: ДНК – и – РНК – полипептидная цепь – белок – комплекс белков с другими веществами (рис. 25).

 Рис. 25. Схема синтеза белка в рибосоме:

А – рибосома;

Б – и-РНК;

В – фермент (белок синтетаза);

Г – т-РНК, несущие аминокислоты в рибосому;

Д – белок.

image017

Тема необъятна, читайте еще:

  1. Биохимия нуклеотидов и нуклеиновых кислот. Матричные биосинтезы
  2. Открытие нуклеиновых кислот в ядрах клеток
  3. Биохимия Белков
  4. Планирование компьютерных экспериментов с моделями систем

Автор: Александр, 09.04.2013
Рубрики: Биология
Предыдущие записи: Размножение и развитие живых систем
Следующие записи: Химический состав живой клетки

Последние статьи

  • ТОП -5 Лучших машинок для стрижки животных
  • Лучшие модели телескопов стоимостью до 100 долларов
  • ПРЕДУПРЕЖДЕНИЕ ОТКЛОНЕНИЙ РЕЧЕВОГО РАЗВИТИЯ У ДЕТЕЙ РАННЕГО ВОЗРАСТА
  • КОНЦЕПЦИИ РАЗВИТИЯ И ПОЗИЦИОНИРОВАНИЯ СИБИРИ: ГЕОПОЛИТИЧЕСКИЕИ ГЕОЭКОНОМИЧЕСКИЕ АСПЕКТЫ ОЦЕНКИ
  • «РЕАЛИЗМ В ВЫСШЕМ СМЫСЛЕ» КАК ТВОРЧЕСКИЙ МЕТОД Ф.М. ДОСТОЕВСКОГО
  • Как написать автореферат
  • Реферат по теории организации
  • Анализ проблем сельского хозяйства и животноводства
  • 3.5 Развитие биогазовых технологий в России
  • Биологическая природа образования биогаза
Все права защищены © 2013 Kursak.NET. Электронная библиотека : Если вы автор и считаете, что размещённая книга, нарушает ваши права, напишите нам: admin@kursak.net