Электронная библиотека

  • Для связи с нами пишите на admin@kursak.net
    • Обратная связь
  • меню
    • Автореферат (88)
    • Архитектура (159)
    • Астрономия (99)
    • Биология (768)
    • Ветеринарная медицина (59)
    • География (346)
    • Геодезия, геология (240)
    • Законодательство и право (712)
    • Искусство, Культура,Религия (668)
    • История (1 078)
    • Компьютеры, Программирование (413)
    • Литература (408)
    • Математика (177)
    • Медицина (921)
    • Охрана природы, Экология (272)
    • Педагогика (497)
    • Пищевые продукты (82)
    • Политология, Политистория (258)
    • Промышленность и Производство (373)
    • Психология, Общение, Человек (677)
    • Радиоэлектроника (71)
    • Разное (1 245)
    • Сельское хозяйство (428)
    • Социология (321)
    • Таможня, Налоги (174)
    • Физика (182)
    • Философия (411)
    • Химия (413)
    • Экономика и Финансы (839)
    • Экскурсии и туризм (29)

Порох как источник энергии

Виды порохов, их формы, размеры, марки.

Со времён появления огнестрельного оружия и до 80-х годов позапрошлого столетия в артиллерии применяли только дымный порох. Он представлял собой смесь нитрата калия, древесного угля и серы в весовом отношении 75 : 10 : 10 . Порошкообразный чёрный порох прессуют в пороховые зёрна определённых размеров и используют в настоящее время в качестве воспламенителей, средств для передачи огня, замедлителей, дистанционных составов, вышибных зарядов  и для снаряжения в патронах охотничьих ружей. В зависимости от размера зерна, он разбивается на сорта и обозначается ДРП №1, 2, 3; КЗДП. ДРП – дымный ружейный порох. Номер обозначает размер зерна (№3 – самый мелкий). Для охотничьих патронов дымный порох имеет марку, типа «Медведь», «Олень». КЗДП – крупнозернистый дымный порох, используется, например, для изготовления воспламенителя.

В настоящее время в артиллерийской технике в качестве источника энергии для движения снарядов, пуль, мин, реактивных снарядов используется бездымный порох. По физико-химической природе бездымные пороха можно разделить на нитроцеллюлозные и смесевые. В зависимости от содержания азота в нитроклетчатке, различают пироксилин №1(содержание азота N=12,9-13%), №2(N=11,9-12,3%) и коллоксилин(N<11,9%). Пироксилин №1 почти нерастворим в спиртоэфирной смеси, пироксилин №2 нацело растворяется в этой смеси. Для изготовления пороха берётся смесь пироксилинов №1 и №2. Подвергнутый действию спиртоэфирной смеси (летучего растворителя) в определённой пропорции, пироксилин под давлением желатинизируется, становится коллоидом. Смесь пироксилина с растворителем в виде очень густой массы при прессовании под давлением через матрицу может приобретать определённую форму (трубка, прут, зерно и др.). Состав пироксилиновых порохов приведён в таблице 3.

 

Таблица 3.

Компоненты Состав пороха в %
Для орудий Для винтовок

 

Для пистолетов (пористый)

 

Обыкно-венный Малогигро-скопичный Беспла-менный
Пироксилин

Растворитель

(Спиртоэфирный раствор)

Стабилизатор

(дифениламин)

Флегматизатор

Графит

Специальные добавки

Влага

93 – 95

 

1 – 4

 

1

–

–

–

1,5-2,0

83

 

2

 

1

–

–

13,0

1

81

 

2

 

1

–

–

15,0

1

91 – 95

 

1

 

1

2-6

0,2-0,3

–

1,3-1,5

96,7

 

0,5

 

1

–

0,3

–

1,5

 

Пироксилиновые пороха – пороха на летучем растворителе, за рубежом они называются одноосновными.

Пороха на труднолетучем и нелетучем растворителе получили название баллиститов (за рубежом их называют двухосновными). При изготовлении баллиститов обычно используют коллоксилин (40-75%), который пластифицируется нитроглицерином, либо нитродигликолем, либо другими нитратами многоатомных спиртов (25-60%). Название порохов соответствует техническим названиям нитратов, например, нитроглицериновый, нитродигликолевый. Баллиститный порох содержит стабилизатор (централит, акардит) и специальные добавки. В орудийные пороха вводятся добавки, понижающие температуру горения, например, нитрогуанидин, что способствует повышению живучести ствола.

Нитроглицериновые пороха на смешанном растворителе называются кордитами и изготовляются из опироксилина №1, пластификатором является спиртоацетоновый растворитель.

Кроме того, могут использоваться нитроцеллюлозные пороха без растворителя, получаемые нитрованием с последующей стабилизацией измельчённого пергамента или вискозной нити.

Смесевые пороха – механическая смесь окислителя, горючего и связующих веществ; окислитель – нитраты, перхлораты; горюче-связующие вещества – каучук, смолы и т.п.

   По назначению (видам оружия) обычно пороха разделяют на четыре группы:

1.   Орудийные пороха

2.   Пороха для стрелкового оружия

3.   Миномётные пороха

4.   Ракетные пороха.

Форма порохов чрезвычайно разнообразна: лента, пластинка, брусок, пруток, кубик, сфера, трубка, чечевица, зерно с одним и многими каналами и др. Форма пороха связана с типом оружия. Маркировка пороха:

Пластинка – Пл (Пл 14-10 – толщина 2е1=0,14 мм, ширина и длина пластинки 2b=2e=1 мм).

Лента – Л (Л35 – толщина 2е1=0,35 мм).

Пороха зеренные с одним или 7 каналами (4/1 – одноканальный 2е1=0,4 мм; 5/7 – 7 канальный 2е1=0,5 мм, где 2е1 – наименьшее расстояние между каналами, или толщина трубки).

Пороха трубчатые – Тр (22/1 Тр – 2е1=2,2 мм)

Порох кольцевой – К (К 32/65-14 – толщина 2е1=0,14 мм, наружный диаметр – 65 мм, внутренний – 32 мм).

Порох спиральный – Сп (Сп14-47, толщина 2е1=0,14мм, ширина спирали 2b=47 мм).

Зернения пороха под пулю имеют …….. обозначение ВТ, ВЛ, ВУ – под тяжелую винтовочную пулю, легкую винтовочную пулю и укороченный винтовочный патрон соответственно.

П – пористый порох. П85    выведено 85 частей селитры на 100 частей пироксилина.

Состав и природа пироксилиновых порохов обозначаются следующими индексами:

“св” – из свежего пироксилина на хлопковой и древесной целлюлозе.

“ца” – древесная целлюлоза в форме жгутиков.

“цг” – древесная целлюлоза в форме гранул

Пер – порох, полученный переделкой старых порохов

ФЛ – порох, подвергнутый флегматизации с поверхностных слоёв.

Гр – порох графитованный

Состав и природа баллиститных порохов.

Н или НГВ – нитроглицериновый порох

НБ – с высокой калорийностью

НДТ – содержащий в качестве охлаждающей добавки динитротолуол и дибутилфтолат.

ДГ – содержащий в качестве добавки центролит.

НДТ-2 – цифра указывает на определённую калорийность пороха (2-770 кал/кг;

3-675 кал/кг).

   Полная маркировка пороха обычно имеет вид:

НБПл 12-10 4/42 М – нитроглицериновый пластинчатый порох, толщина пластинки 2е1=0,12 мм, ширина кв. пластинки 2b=2с=1 мм;

4 – номер партии; 44 – год изготовления 1944;

М – шифр завода-изготовителя;

12/7 св 5/41 с – пироксилиновый порох из свежего пироксилина 7-иканальный с

2е1=1,2 мм, 5 партия 1941 г. изготовления, шифр завода изготовителя – с.

Зернение пороха для морской артиллерии обозначается также  как для сухопутной артиллерии. Трубчатые пороха для морской артиллерии имеют другое обозначение. Например 180/60, где 180 – калибр орудия; 60 – длина ствола в калибрах.

В охотничьих патронах бездымный порох имеет другую маркировку: “Сокол”, “Барс”, “Сунар”, “ВУСД”, “Супербарс” и т.д.

Порох сферической формы как правило используется в зарядах спортивного оружия, в карабинах, пистолетах. Он имеет наибольшую гравиметрическую плотность, больше, чем гравиметрическая плотность зерна или пластинки. В таблице 4 приведены геометрические размеры некоторых марок порохов.

Таблица 4.

Марки пороха размеры,мм марки пороха размеры,мм
2е1 2b 2c 2e1 dKH 2c
НБПл 10-10

 

НПл 10-12

 

“Сокол”

 

“Х”

0,07-

-0,12

0,08

0,16

0,13

0,15

0,09

0,11

0,8-

1,1

1,2-

1,4

1,7

1,8

0,97

0,12

0,8-

1,1

1,2

1,9

1,7

1,8

0,97

0,12

ВУФл

 

5/7 св

 

5/1 св

 

12/1 Tp

 

НДТ-З-14/1

 

75/50

0,19-

-0,24

-0,50

0,56

0,55-

-0,60

1,0-

-1,2

1,4-

1,53

1,4

0,10-

0,11

0,15-

0,25

0,25-

0,35

2,4-

2,8

1,9-

2,2

2,9

0,85-

1,25

2,5-

3,5

2,7-

3,3

590-

590

365-

370

600

 

   Физико – химические характеристики пороха.

  1. Удельный вес пороха – d.

Удельный вес пороха зависит от состава пороха и условий технологии изготовления и колеблется от 1,56 до 1,64. Среднее значение для пиксилиновых порохов d»1,6 кг/дм3, для баллиститов и кардитов d»1,58 кг/дм3,пористые пироксилиновые пороха (пистолетный) d=1,3¸1,4 кг/дм3.

  1. Гравиметрическая плотность пороха – Dг.

Зависит от формы порохового зерна и представляет отношение веса пороха, свободно насыпанного в сосуд определённого объёма и формы, к весу воды при 4°С (плотность равна 1 кг/дм3), заполняющей сосуд того же объёма. Форма и объём сосуда оказывают также влияние на значение гравиметрической плотности, поэтому оговариваются особо. Гравиметрическая плотность – весьма важная характеристика для снаряжения патрона стрелкового оружия, где порох засыпается в гильзу.

3.   Теплота взрывчатого превращения или количество тепла Q, выделяемое при сгорании 1 кг пороха, является весьма важной характеристикой порохов как источник энергии. Обычно по условиям горения различают теплоту горения при постоянном объёме Qw и при постоянном давлении Qp. Связь между ними имеет вид

Qw=Qp + mRT,

где m – число граммолей газообразных продуктов на 1 кг пороха

R – универсальная газовая востоянная

T – температура горения пороха

обычно Q определяют из опытов в калометрической бомбе, которая погружена в воду при температуре t=15°C. При этом влага из парообразного состояния превращается в жидкость. Фактически же при выстреле вода находится в парообразном состоянии

Qw(ж)=Qw(пар)+620n/100.

где:  n – процентное содержание воды в продуктах разложения пороха по весу.

620 – количество больших калорий, выделяемое при конденсации 1 кг водяных паров и охлаждении их до температуры 15 ºС (≈ 539 + 100 – 15). Теплота горения Qwж может изменяться в пределах 600 – 1250 ккал/кг.

4. Потенциал пороха П = ЕQw. Если количество теплоты Qw перевести в механическую энергию, умножив на механический эквивалент тепла Е = 4270 кгдм/ккал, то получим    П = (4270 · Qw) кгдм.

Для нитроцеллюлозных порохов П = 2560000 ÷ 5380000 кгдм = 256 ÷ 538 тм.

5. Температура горения при постоянном объеме Т1 К по известным из опыта составу продуктов горения и тепловому эффекту – Qw рассчитывается температура при постоянном объеме – Т1 К или тепловом эффекте Qр рассчитывается температура горения при постоянном давлении Т0 К. Для порохов ствольного оружия температуру горения рассчитывают по Qwи теплоемкости Сw. Для ракетных порохов по Qр и Ср при постоянном давлении, Т1 К для нитроцеллюлозных порохов изменяется в пределах 2400 – 3800 К, а  Т0 = 1900 – 3000 К.

7. Удельная теплоемкость газа Сw ккал/кг·град. – количество тепла, необходимое для нагревания 1 кг газа на 1 ºС.

Теплоемкость зависит от состава пороховых газов и температуры газов. На участке изменения температур от температуры горения Т1 К до температуры пороховых газов в момент вылета снаряда Тд К (газ охлаждается до температуры 1800 – 2000 К). Зависимость теплоемкости от температуры можно принять линейной

Сw =  А + вТ

Где А и в – константы.

Значения некоторых физико-химических характеристик порохов приведены в таблице 5.

                        Таблица 5

Характеристика
Для пироксилиновых порохов Для нитроглицериновых порохов
Qw (вода – пар), ккал/кг 800 – 900 1100 – 1200
ω1 (вода – пар), дм3/кг 900 – 970 800 – 860
Т1 К 2800 – 2500 3000 – 3500
δ, кг/дм3 1,64 – 1,58 1,62 – 1,56

 

Для дымных порохов δ колеблется от 1,50 до 1,80 кг/ дм3 и в исключительных случаях до 1,90 кг/ дм3.

Значения Qw ω1 и Т1 К зависят от состава пороха и, прежде всего от содержания азота в пороховых газах.

Г.П. Кисмемский дал следующие эмпирические формулы:

ω1 = 1515 – 48,72 N              Т1 = 273 +34,7 N5/3

Где N – содержание азота в процентах.

В.Г. Шеклин для наших порохов приводит зависимости:

Qw=730+[48,5(N-11,8)+9,4]·n-28,5c-24,3d-37,5v-13,6h-26,7h‘-31,0s-32,5ф-42,0g

ω1 = 944-47,3(N-11,8)-2,45n+14c+12d+23v+3,4h+16,9h‘+14,6s+17,4ф+10g

Т1 К = 1290º+375(N-11,8)+22n-71c-59d-100v-54h-82h‘-88s-92ф-125g,

где N – содержание азота в пироксилине; содержание в порохе  (в процентах) нитроглицерина – n; централита – c; дибутилфталата – d; вазелина – v; летучих удаляемых –h; неудаляемых – h‘; дифиниламина – s; камфоры – ф; графита – g.

Порох с содержанием азота N = 11,8 % имеет:

Qw= 730 ккал/кг, ω1 = 944 дм3/кг, Т1 К = 2790 К

Тема необъятна, читайте еще:

  1. БИОТЕХНОЛОГИИ В ПОЛУЧЕНИИ ЭНЕРГИИ РЕФЕРАТ
  2. Предмет и задачи внутренней баллистики

Автор: Александр, 09.04.2013
Рубрики: Разное
Предыдущие записи: Нарушение терморегуляции, особенности в педиатрии, алгоритм оказания помощи
Следующие записи: Предмет и задачи внутренней баллистики

Последние статьи

  • ТОП -5 Лучших машинок для стрижки животных
  • Лучшие модели телескопов стоимостью до 100 долларов
  • ПРЕДУПРЕЖДЕНИЕ ОТКЛОНЕНИЙ РЕЧЕВОГО РАЗВИТИЯ У ДЕТЕЙ РАННЕГО ВОЗРАСТА
  • КОНЦЕПЦИИ РАЗВИТИЯ И ПОЗИЦИОНИРОВАНИЯ СИБИРИ: ГЕОПОЛИТИЧЕСКИЕИ ГЕОЭКОНОМИЧЕСКИЕ АСПЕКТЫ ОЦЕНКИ
  • «РЕАЛИЗМ В ВЫСШЕМ СМЫСЛЕ» КАК ТВОРЧЕСКИЙ МЕТОД Ф.М. ДОСТОЕВСКОГО
  • Как написать автореферат
  • Реферат по теории организации
  • Анализ проблем сельского хозяйства и животноводства
  • 3.5 Развитие биогазовых технологий в России
  • Биологическая природа образования биогаза
Все права защищены © 2013 Kursak.NET. Электронная библиотека : Если вы автор и считаете, что размещённая книга, нарушает ваши права, напишите нам: admin@kursak.net