Имитационное моделирование представляет собой по существу компьютерный эксперимент с моделью исследуемой или проектируемой системы, проводимый с целью изучения ее поведения. План имитационного эксперимента необходим как для четкого представления исследователем алгоритма получения с помощью эксперимента нужной информации, так и для эффективного использования ресурсов вычислительной системы.
Существует теория планирования экспериментов, которая основную задачу планирования эксперимента ставит как задачу получения необходимой информации об исследуемой системе при заданных ограничениях на ресурсы, включающие время на вычисления, потребный объем памяти и т.п. Частные постановки задачи планирования эксперимента могут включать требования минимизации затрат процессорного времени на моделирование, увеличения точности и достоверности результатов моделирования, проверки адекватности моделей и т.д.
Наибольшее значение при планировании компьютерного эксперимента имеют следующие факторы: 1) простота воспроизведения на компьютере условий эксперимента с моделью исследуемой системы; 2) возможность управления экспериментом с моделью системы, включая его прерывание и возобновление; 3) удобство изменения условий проведения эксперимента, включая учет воздействия внешней среды; 4) наличие связи, или корреляции между отдельными значениями величин, вычисляемых в процессе моделирования; 5) определение временного интервала моделирования.
Преимущество компьютерного моделирования по сравнению с натурным (с реальным объектом) состоит в возможности полного воспроизведения условий эксперимента с моделью исследуемой системы. Достоинством является также простота осуществления прерывания и возобновления компьютерного эксперимента, тем более, что это позволяет применять эвристические приемы планирования, нереализуемые в натурных экспериментах.
Недостаток компьютерных экспериментов кроется в трудностях, возникающих из-за существования корреляции в выходных последовательностях: результаты наблюдений зависят от результатов предыдущих наблюдений, поэтому в них содержится меньше полезной информации, чем в независимых наблюдениях. Большинство же существующих методов планирования экспериментов опирается на предположение о независимости наблюдений, поэтому многие из этих методов нельзя непосредственно применять для компьютерных экспериментов при наличии корреляции.
Основные понятия теории планирования экспериментов
В качестве модели эксперимента используется уже знакомая из параграфа 1.6.1 пособия учебника кибернетическая модель типа «черный ящик». В этой модели различают входные переменные xi, i=1,…, k и выходные yj, j=1,…, m. Каждая из переменных в проводимом эксперименте может быть либо фактором, либо реакцией – в зависимости от той роли, которая ей отводится. В компьютерных экспериментах фактор является входной переменной, а реакция – выходной переменной.
Каждый фактор может принимать в ходе эксперимента одно из нескольких значений, соответствующих уровням. Фиксированная совокупность уровней факторов определяет одно из возможных состояний системы. Одновременно эта совокупность представляет собой условия проведения одного из возможных экспериментов.
Каждой фиксированной совокупности уровней факторов соответствует определенная точка в многомерном пространстве, называемом факторным пространством. Эксперименты могут быть реализованы не во всех точках факторного пространства, а только в точках, принадлежащих допустимой области.
Между уровнями факторов и реакцией системы существует связь, задаваемая соотношением
yj=ψj(x1,x2,…xk), j=1,…, m.
Функция ψj, связывающая реакцию с факторами, называется функцией реакции. Геометрическая интерпретация, соответствующая функции реакции, представляет собой поверхность реакции.
Вид зависимостей ψj, j=1,…, m исследователю заранее не известен, поэтому используются приближенные соотношения:
ỹj=φj(x1,x2,…xk), j=1,…, m.
Зависимости φj находятся по данным эксперимента, который необходимо провести таким образом, чтобы при минимальных затратах ресурсов, например, числа испытаний, изменяя по специально сформулированным правилам значения входных переменных, построить математическую модель системы и оценить ее характеристики.
Определим основные свойства факторов, используемых при планировании экспериментов. Факторы при проведении экспериментов могут быть управляемыми и неуправляемыми, наблюдаемыми и ненаблюдаемыми, изучаемыми и неизучаемыми, количественными и качественными, фиксированными и случайными.
Фактор называется управляемым, если его уровни целенаправленно задаются исследователем в процессе эксперимента. При компьютерной реализации модели исследователь принимает решения, управляя изменением различным факторов в допустимых пределах.
Фактор относится к наблюдаемым, если его значения измеряются и регистрируются. Как правило, в компьютерном эксперименте с моделью наблюдаемые факторы совпадают с управляемыми, поскольку неразумно и неудобно управлять фактором, не наблюдая его. В то же время неуправляемый фактор можно наблюдать. Например, при проектировании какой-либо конкретной системы невозможно управлять заданными случайным образом действиями внешней среды, но можно наблюдать их в ходе компьютерного эксперимента. Наблюдаемые неуправляемые факторы называются сопутствующими. Обычно при компьютерном эксперименте с моделью общее число сопутствующих факторов велико, поэтому следует учитывать влияние лишь наиболее существенно воздействующих на реакцию, интересующую исследователя.
Фактор называется изучаемым, если он включен в модель для изучения свойств системы, а не для вспомогательных целей, например для увеличения точности эксперимента.
Фактор называется количественным, если его значениями являются числовые величины, влияющие на реакцию, а в противном случае фактор называется качественным. Например, в модели системы, формализуемой в виде системы массового обслуживания (СМО), количественными факторами являются интенсивности входящих потоков заявок, интенсивности потоков обслуживания, емкости накопителей, количество обслуживающих каналов и т.д., а качественными факторами служат дисциплины постановки в очередь, выбора из очереди, обслуживания заявок каналами и т.д. Качественным факторам, в отличие от количественных, не соответствует числовая шкала. Тем не менее, и для них можно построить более слабую условную порядковую шкалу, с помощью которой можно упорядочивать факторы путем установления соответствия между условиями качественного фактора и числами натурального ряда.
Фактор называется фиксированным, если в эксперименте исследуются все интересующие экспериментатора значения фактора. Если же экспериментатор исследует только некоторую случайную выборку из совокупности интересующих значений факторов, то фактор называется случайным. С использованием случайных факторов можно сделать вероятностные выводы и о тех значениях факторов, которые в эксперименте не исследовались.
В компьютерных экспериментах с моделями не бывает неуправляемых или ненаблюдаемых факторов применительно к исследуемой системе. В качестве воздействий внешней среды, т. е. неуправляемых и ненаблюдаемых факторов, в компьютерной имитационной модели выступают стохастические входные переменные. Если имитационная модель сформулирована, то все факторы определены, и во время проведения данного эксперимента с моделью дополнительные факторы вводить нельзя.
Каждый фактор может принимать в эксперименте одно или несколько значений, называемых уровнями, причем фактор будет управляемым, если его уровни целенаправленно выбираются экспериментатором. Для полного определения фактора необходимо указать последовательность операций, с помощью которых устанавливаются его конкретные уровни. Такое определение фактора называется операциональным и обеспечивает однозначность понимания фактора.
Основными требованиями, предъявляемыми к факторам, являются требование управляемости фактора и требование непосредственного воздействия на объект. Под управляемостью фактора понимается возможность установки и поддержания выбранного нужного уровня фактора постоянным в течение всего испытания или изменяющимся в соответствии с заданной программой. Требование непосредственного воздействия на объект имеет большое значение в связи с тем, что трудно управлять фактором, если он является функцией других факторов.
При планировании эксперимента обычно одновременно изменяются несколько факторов. Основные требования, которые предъявляются к совокупности факторов, – совместимость и независимость. Совместимость факторов означает, что все их комбинации осуществимы, а независимость соответствует возможности установления фактора на любом уровне независимо от уровней других.
При проведении компьютерного эксперимента с моделью для оценки некоторых характеристик процесса функционирования исследуемой системы экспериментатор стремится создать такие условия, которые способствуют выявлению влияния факторов, находящихся в функциональной связи с искомой характеристикой.
Для этого необходимо отобрать факторы хi i =1,2,…,k, влияющие на искомую характеристику, и описать функциональную зависимость; установить диапазон изменения факторов [хimin, хimax]; определить координаты точек {х1, х2,…, хk} факторного пространства, в которых следует проводить эксперимент; оценить необходимое число реализаций и их порядок в эксперименте.