Включает в себя катаболизм (расщепление углеводов пищи и выделение энергии) и анаболизм (синтез углеводов с затратой энергии). Катаболизм УВ включает в себя 3 стадии:
1 стадия: углеводы пищи (суточная потребность 400-500г, самая большая, т.к. глюкоза является основным источником энергии) расщепляется до моносахаридов: глюкозы, галактозы и фруктозы (до мономеров). Расщепление внеклеточное, происходит в ЖКТ.
2 стадия: внутриклеточное расщепление глюкозы протекает в процессе гликолиза с
образованием ПВК.
3 стадия: ОДПВК, ЦТК и ЦПЭ – внутримитохондриально.
Глюкоза расщепляется в ПФП (пентозофосфатный путь) – прямое расщепление глюкозы
– энергия не выделяется, функция не энергетическая.
Функции углеводов.
- энергетическая
- рецепторная
- защитная
- пластическая
Переваривание и всасывание углеводов.
Лишь малая часть углеводов растительной пищи доступна для питания человека, из-за отсутствия соответствующих ферментов. Не перевариваются гемицеллюлозы, целлюлозы, ксиланы, пектины и др. тем не менее они имеют биохимическую функцию и физиологическое значение. Некоторые пентозаны гидролизуются и преобразуются ферментами микрофлоры толстого кишечника с образованием CO2,; С2Н5ОН и органических кислот, что стимулирует перистальтику. Кроме этого, растительные пектины и целлюлозы обладают сорбционно активными свойствами и способны выводить из организма различные токсины.
Основными углеводами растительной и животной пищи являются крахмал и гликоген, соответственно. Крахмал представляет собой смесь двух фракций полисахаридов: неразветвленной амилозы и разветвленного амилопектина.
В прямых цепях крахмала глюкозные остатки соединены между собой а-1,4-гликозидглюкозными связями (фермент а-амилаза).
В точках ветвления связи 1,6 – для гидролиза, которых нужны специальные ферменты. Гликоген имеет большую молекулярную массу, чем крахмал и разветвлен в значительно большей степени. (В его гидролизе принимают участие те же ферменты). Гидролиз данных полисахаридов начинается в ротовой полости под действием амилазы слюны. Значимость этого процесса во многом не ясна, многие млекопитающие этим свойством не обладают.
Основное значение имеют процессы расщепления гликогена и крахмала под действием панкреатической а-амилазы.
а-амилаза имеет абсолютную потребность к ионам С1. Стабилизируется катионами Са, имеет оптимум рН~7,1.
Фермент представляет собой одноцепочный полипептид, к которому присоединен олигосахарид.
Продукты гидролиза гликогена и крахмала – это смесь олигосахаридов и конечный продукт – мальтоза.
Процесс гидролиза дисахаридов пищи происходит в дистальном отрезке двенадцатиперстной кишки и происходит он не в просвете, а в клетках слизистой оболочки. Основные ферменты:
– мальтаза
– изомальтаза
– сахараза
– лактаза.
Установлено, что изомальтаза способна гидролизовать а-1,6-гликозидфруктозидные связи, пример соединения – палатиноза; сахараза также способна гидролизовать а-1,6-
гликозидные связи. Клеточный эпителий содержит три различных фермента, имеющих (3-галактазидную активность. Ферменты: р-галаксидаза (рН~4,5), гетерогалактозидаза, истинная лактаза.
Всасывание углеводов в кишечнике.
Химическая природа моносахаридов, а также их различная структурная форма (открытая цепь, пиранозный или фуранозный цикл) имеет влияние на скорость всасывания. Галактоза > глюкоза > фруктоза > манноза > ксилоза > арабиноза.
Для последних моносахаридов всасывание носит характер облегченной диффузии; для галакто- и глюкопиранозы – это активный транспорт, при этом всасывание может идти против десятикратного градиента. Для этого процесса есть специфические переносчики. Важная роль принадлежит Na- и К- зависимым АТФ-азам.
Метаболизм глюкозы.
Концентрация глюкозы в крови человека поддерживается близкой к 5 ммоль/л. Тогда как в цитоплазме большинства клеток концентрация глюкозы очень низкая. Ее поступление в клетку осуществляется в направлении падения градиента концентрации. Это не пассивная диффузия, а облегченный процесс, природа которого мало изучена. Минимальные потребности в глюкозе имеют все ткани, но у некоторых из них, например, у клеток мозга и эритроцитов эти потребности весьма значительны.
Гликолиз (дихотомический процесс).
Это главный путь утилизации глюкоза, протекающий во всех клетках. Гликолиз – это последовательность 10 ферментативных реакций в результате которых из глюкозы образуется 2 молекулы пирувата с одновременным (субстратным) генерированием АТФ. У аэробных организмов гликолиз предшествует ОДГТВК, ЦТК и ЦПЭ. Такой гликолиз называют аэробным.
В анаэробных условиях, например, при мышечном сокращении пируват восстанавливается до лактата – это так называемый анаэробный гликолиз.
Биомедицинское значение ферментативных реакций гликолиза.
- главный путь метаболизма глюкозы, а также фруктозы и галактозы с целью
быстрого и последующего генерирования энергии. - гликолиз – это путь образования строительных блоков для биосинтеза высших
жирных кислот, некоторых аминокислот и других соединений. - способность к образованию АТФ в анаэробных условиях, например, в интенсивно
работающих мышцах или при кислородном голодании (в сердечной мышце
возможности осуществления гликолиза ограничены, поскольку аэробные условия
просто необходимы для клеток миокарда – недостаток (^приводит к ишемии).
Известно заболевания, связанные с нарушением активности ферментов в гликолизе,
например, незначительное ингибирование пируваткиназы вызывает гемолитическую
анемию.
В быстро растущих раковых клетках активность гликолиза высока, возникает избыток
пирувата и лактата —► рН в цитоплазме повышается.
Последовательность реакций гликолиза одинакова у микробов, растений, животных и
человека.
Суммарная реакция и выход энергии при гликолизе.
Глюкоза + 2АДФ + 2 Pi + 2 НАД* à 2 пирувата + 2 АТФ + 2 НАДН + 2Н++ 2 Н2О. При субстратном фосфорилировании суммарный выход энергии гликолиза составляет 2 молекулы АТФ на 1 моль глюкозы, также в этих реакциях образуется 2 молекулы НАДН на 1 молекулу глюкозы, которые в митохондриальном матриксе в реакции
окислительного фосфорилирования потенциально могут дать 6 молекул АТФ. Реакции гликолиза протекают в цитоплазме, а окислительное фосфорилирование в митохондриях. Протоны водорода не способны проникать через мембрану митохондрий и нуждаются в специальном переносчике. Существует 2 типа челночного механизма переноса протонов водорода:
- малатно-аспартатный, при котором потери АТФ не происходит; (8АТФ).
- глицерофосфатный – теряется 2 молекулы АТФ (6АТФ).
Нарушения гликолиза в эритроцитах приводит к изменению транспорта О2. Гликолиз в
эритроцитах и транспорт O2 между собой .
Эритроциты характеризуются высокой концентрацией 2,3 – бифосфоглицерата =4
ммоль*л, тогда как концентрация его в других клетках низкая.
Присутствие и повышенный уровень 2,3 – БФГ в эритроцитах способствует диссоциации
Ог, из оксиНЬ и переход его в ткани.