Контрольная №1
Задание 9. Кристаллические включения клетки. Виды кристаллов, их химическая природа, особенности строения, диагностическое значение при анализе лекарственного растительного сырья. Биологическое значение образования кристаллов в растении.
В отличие от животных, которые выделяют избыток ионов во внешнюю среду вместе с мочой, растения, не имеющие развитых органов выделения, вынуждены накапливать их в тканях. Обычно считают, что кристаллы кальция оксалата – конечный продукт жизнедеятельности клетки, предназначенный для выведения излишков кальция. Действительно, кристаллы образуются в больших количествах в тех органах и тканях, которые растения время от времени сбрасывают (листья и кора). Однако имеются данные, что кристаллы могут исчезать из вакуолей. В таком случае их можно рассматривать как место отложения запасного кальция.
Подтвердить химическую природу кристаллов кальция оксалата можно действием концентрированных минеральных кислот. Под действием кислоты хлористоводородной кристаллы растворяются. При действии кислоты серной кальция оксалат переходит в нерастворимый кальция сульфат (гипс), образующий многочисленные игольчатые кристаллы.
Кристаллы кальция оксалата часто встречаются в растительных клетках. Они откладываются только в вакуолях. Форма кристаллов кальция оксалата довольно разнообразна и часто специфична для определенных растений, что используется при диагностике лекарственного растительного сырья. Это могут быть одиночные кристаллы ромбоэдрической, октаэдрической или удлиненной формы (листья белены), друзы – звездчатые сростки кристаллов шаровидной формы (листья спорыша, дурмана, сенны, корни ревеня), рафиды – мелкие игольчатые кристаллы, собранные в пучки (листья ландыша, корневища марены), стилоиды – более крупные, палочковидные кристаллы (листья ландыша) и кристаллический песок – скопления множества мелких одиночных кристаллов (листья красавки). Наиболее часто встречаются друзы.
1,2 – рафиды (1 – вид сбоку, 2 – вид на поперечном срезе); 3 – друза; 4 – кристаллический песок; 5 – одиночный кристалл.
Вдоль волокон в коре или вдоль жилок листьев у ряда растений (кора дуба, корни солодки, листья сенны) встречается кристаллоносная обкладка – расположенные параллельными рядами клетки с одиночными кристаллами кальция оксалата.
К кристаллическим включениям близки цистолиты. Они чаще всего состоят из кальция карбоната или кремнезема и представляют собой гроздевидные образования, возникающие на выступах клеточной стенки, вдающейся внутрь клетки. Цистолиты характерны для растений семейств крапивных, тутовых. Значение цистолитов пока не выяснено.
Задание 16. Общие закономерности развития растений. Этапы онтогенеза.
Онтогенез цветкового растения от возникновения зародыша в семени до естественной смерти особи подразделяют на возрастные периоды – этапы онтогенеза.
1. Латентный (скрытый) – покоящиеся семена.
2. Прегенеративный, или виргинильный, – от прорастания семени до первого цветения.
3. Генеративный – от первого до последнего цветения.
4. Сенильный, или старческий, – с момента потери способности к цветению до отмирания.
В пределах этих периодов различают этапы. В группе виргинильных растений выделяют проростки (P), недавно появившиеся из семян и сохраняющие зародышевые листья – семядоли и остатки эндосперма. Ювенильные растения (Yuv), несущие еще семядольные листья, и следующие за ними ювенильные листья – более мелкие и иногда по форме еще не вполне похожие на листья взрослых особей. Имматурными (Im) считают особи, уже потерявшие ювенильные черты, но еще не вполне оформившиеся, полувзрослые. В группе генеративных растений (G) по обилию цветущих побегов, их размерам, соотношению живых и мертвых частей корней и корневищ различают молодые (G1), средневзрослые зрелые (G2) и старые генеративные особи (G3). Для высших растений очень важны процессы органогенеза. Под органогенезом понимают формирование и развитие основных органов (корня, побегов, цветков). Каждому виду растений свойствен свой темп заложения и развития органов. У голосеменных формирование репродуктивных органов, ход оплодотворения и развития зародыша достигают одного года (у ели), а иногда и больше (у сосны). У некоторых высших споровых, например у равноспоровых плаунов, этот процесс длится около 12-15 лет. У покрытосеменных процессы споро- и гаметогенеза, оплодотворения и развития зародыша происходят интенсивно, особенно у эфемеров (однолетних растений засушливых районов) – за 3-4 недели.
Для цветковых растений установлен ряд этапов органогенеза. Главнейшие из них: дифференциация стебля, закладка листьев и побегов второго порядка; дифференциация соцветия; дифференциация цветка и образование археспория в семязачатках; мега- и микроспорогенез; мега- и микрогаметогенез; зиготогенез; формирование плода и семени.
В онтогенезе организмов закономерно повторяются некоторые этапы развития, свойственные их отдаленным предкам (явление рекапитуляции). Впервые естественнонаучное объяснение рекапитуляциям дал Ч. Дарвин (1859). В 1866 г. Э. Геккель фактам повторения этапов филогенеза в онтогенезе придал форму биогенетического закона. В основе биогенетического закона лежит индивидуальное развитие особи (онтогенез), которое, в той или иной степени, представляет короткое и быстрое повторение важнейших этапов эволюции вида (филогенеза). Имеется множество примеров проявления биогенетического закона в мире растений. Так, протонема мхов, образующаяся на первых этапах прорастания споры, напоминает водоросль и свидетельствует о том, что предками мхов были, вероятнее всего, зеленые водоросли. У многих папоротников первые листья имеют дихотомическое (вильчатое) жилкование, которое было свойственно листьям ископаемых форм древних папоротников из среднего и верхнего девона. Зигоморфные цветки покрытосеменных при своем заложении проходят актиноморфную стадию. Биогенетический закон используется для выяснения особенностей филогенеза.
Задание 19.
Метаморфозы корня. Особенности морфологического строения метаморфозов корня в связи с выполняемыми функциями. Микориза. Виды микоризы. Примеры.
Если корни выполняют особые функции, их строение меняется. Резкое, наследственно закрепленное видоизменение органа, вызванное сменой функций, носит название метаморфоза. Видоизменения корней очень разнообразны.
Корни многих растений образуют симбиоз с гифами почвенных грибов, называемый микоризой («грибокорень»). Микориза образуется на сосущих корнях в зоне поглощения. Грибной компонент облегчает корням получение воды и минеральных элементов из почвы, часто гифы грибов заменяют корневые волоски. В свою очередь, гриб получает от растения углеводы и другие питательные вещества. Различают два основных типа микоризы. Гифы эктотрофной микоризы образуют чехол, окутывающий корень снаружи. Эктомикориза широко распространена у деревьев и кустарников. Эндотрофная микориза встречается в основном у травянистых растений. Эндомикориза находится внутри корня, гифы внедряются в клетки коровой паренхимы. Микотрофное питание очень широко распространено. Некоторые растения, например орхидные, вообще не могут существовать без симбиоза с грибами.
На корнях бобовых возникают особые образования – клубеньки, в которых поселяются бактерии из рода Rhizobium. Эти микроорганизмы способны усваивать атмосферный молекулярный азот, переводя его в связанное состояние. Часть веществ, синтезированных в клубеньках, усваивают растения, бактерии, в свою очередь, используют вещества, находящиеся в корнях. Этот симбиоз имеет большое значение для сельского хозяйства. Бобовые растения благодаря дополнительному источнику азота богаты белками. Они дают ценные пищевые и кормовые продукты и обогащают почву азотистыми веществами.
Очень широко распространены запасающие корни. Они обычно утолщены и сильно паренхиматизированы. Сильно утолщенные придаточные корни называют корневыми шишками, или корнеклубнями (георгин, некоторые орхидные). У многих, чаще двулетних, растений со стержневой корневой системой возникает образование, носящее название корнеплода. В образовании корнеплода принимают участие и главный корень, и нижняя часть стебля. У моркови почти весь корнеплод составлен корнем, у репы корень образует лишь самую нижнюю часть корнеплода.
Корнеплоды культурных растений возникли в результате длительного отбора. В корнеплодах сильно развита запасающая паренхима и исчезли механические ткани. У моркови, петрушки и других зонтичных паренхима сильно развита во флоэме; у репы, редьки и других крестоцветных – в ксилеме. У свеклы запасные вещества откладываются в паренхиме, образованной деятельностью нескольких добавочных слоев камбия.
У многих луковичных и корневищных растений образуются втягивающие, или контрактильные корни. Они могут укорачиваться и втягивать побег в почву на оптимальную глубину на время летней засухи или зимних морозов. Втягивающие корни имеют утолщенные основания с поперечной морщинистостью.
Воздушные корни образуются у многих тропических эпифитных однодольных из семейств орхидных, ароидных, бромелиевых. Эпифиты поселяются на других растениях, но не паразитируют на них, а используют как подпорку для поднятия вверх, к свету. Воздушные корни свободно висят в воздухе и приспособлены к поглощению атмосферной влаги. На их поверхности образуется веламен. Веламен, как и ризодерма, образуется из протодермы, но это многослойная ткань. Клетки веламена отмирают, их стенки имеют сетчатые или спиральные утолщения. Через поры и сквозные отверстия в клеточных стенках влага проникает капиллярным путем. Изнутри веламен подстилается экзодермой со сложно построенными пропускными клетками, через которые вода передается в клетки коры и осевого цилиндра. Веламен встречается и у некоторых наземных однодольных (кливия, хлорофитум), в этом случае он выполняет функцию механической защиты и предохраняет растение от потери воды из первичной коры.
Дыхательные корни, или пневматофоры образуются у некоторых тропических древесных растений, живущих в условиях недостатка кислорода (таксодиум, или болотный кипарис; растения мангровых зарослей, обитающие по болотистым берегам океанических побережий). Пневматофоры растут вертикально вверх и высовываются над поверхностью почвы. Через систему отверстий в этих корнях, связанных с аэренхимой, воздух поступает в подводные органы.
У некоторых растений для поддержания побегов в воздушной среде образуются дополнительные опорные корни. Они отходят от горизонтальных ветвей кроны и, достигнув поверхности почвы, интенсивно ветвятся, превращаясь в столбовидные образования, поддерживающие крону дерева (столбовидные корни баньяна). Ходульные корни отходят от нижних участков стебля, придавая стеблю устойчивость. Они образуются у растений мангровых зарослей, растительных сообществ, развивающихся на затопляемых во время прилива тропических берегах океанов, а также у кукурузы. У фикуса каучуконосного образуются досковидные корни. В отличие от столбовидных и ходульных, они являются по происхождению не придаточными, а боковыми корнями.
Побеги плюща, стремясь к солнцу, обвивают другие растения или прикрепляются к стенам при помощи корней – прицепок. У паразитических растений корни видоизменяются в присоски – гаустории, которые внедряются в ткани других растений и поглощают из клеток воду и питательные вещества.
Задание 31.
Соцветия. Определение соцветия. Классификация. Особенности строения ботриоидных соцветий. Примеры. Биологическое значение соцветий.
Цветки могут располагаться поодиночке или группами. В тех случаях, когда они располагаются группами, образуются соцветия. Соцветием называют часть побега или систему видоизмененных побегов, несущих цветки. Соцветия обычно отграничены от вегетативной части растения. Биологический смысл возникновения соцветий – в возрастающей вероятности опыления цветков как анемофильных, так и энтомофильных растений. Несомненно, что насекомое за единицу времени посетит гораздо больше цветков, если они собраны в соцветия. Кроме того, цветки, собранные в соцветия, более заметны среди зелени листьев, нежели одиночные цветки. Многие поникающие соцветия легко раскачиваются под влиянием движения воздуха, способствуя тем самым рассеиванию пыльцы.
Соцветия, у которых боковые оси ветвятся, называются сложными. У простых соцветий боковые оси не разветвлены и являются цветоножками. У сложного соцветия боковые оси несут частные, или парциальные, соцветия. Считается, что сложные соцветия эволюционно возникли раньше простых. Во многих случаях простые соцветия возникали в процессе упрощения сложных, что связано с редукцией их боковых осей. Полагают, что одиночные цветки в пазухах листьев или на верхушках побегов также возникли в результат крайней редукции соцветий разного типа. Главная ось может заканчиваться верхушечным цветком – в этом случае соцветие ограничено в росте и получило название закрытого. У открытых соцветий главная ось обладает неограниченным ростом, и цветки располагаются сбоку от морфологической верхушки. У сложных соцветий верхушечными цветками могут заканчиваться главная и боковые оси, или все они имеют неограниченный рост.
У обоеполых растений соцветия несут обоеполые цветки, но у однодомных и двудомных соцветия могут быть также тычиночными, пестичными и полигамными. В последнем случае встречаются одновременно тычиночные, пестичные и обоеполые цветки. Классификация соцветий может осуществляться на основе особенностей ветвления конечных парциальных соцветий. В соответствии с этим соцветия подразделяют на два главных типа: ботриоидные (ботрические, или рацемозные) и цимоидные (цимозные). У ботриоидных соцветий (от греческого «ботрион» – кисть) характер ветвления моноподиальный. Цимоидные соцветия (от греческого «кюма» – волна по особому порядку зацветания) обязательно характеризуются симподиальным ветвлением парциальных соцветий.
Простые бoтриоидные соцветия довольно обычны, особенно у травянистых растений. Боковые оси простых соцветий не ветвятся и представляют собой цветоножки, заканчивающиеся цветками. Простые соцветия могут быть как открытыми, так и закрытыми. Возникают они, по-видимому, из сложных ботриоидных соцветий различного типа (в результате процесса редукции), а также иногда из цимоидных соцветий. Наиболее обычное простое соцветие – кисть. В кисти все цветки сидят на цветоножках, более или менее равномерно распределенных вдоль оси. Кисти встречаются у многих представителей семейства крестоцветных. Колос – производное кисти, отличающийся от нее сидячими цветками. В колос, например, собраны цветки у видов рода ятрышник (Orchis). Разновидностью колоса следует считать простую ботриоидную сережку (тополь Populus, ива Salix). Сережка обычно поникает, после цветения или созревания плодов опадает целиком вместе с осью соцветия. Чаще всего сережка несет однополые цветки (ива Salix, тополь Роpulus). Почти все представители семейства аронниковых (Araceae) имеют соцветие початок, который отличается от колоса разросшейся утолщенной осью соцветия. Часто початок окружен прицветным листом – покрывалом, нередко имеющим незеленую окраску. Все перечисленные соцветия имеют нормальную развитую ось. однако существует ряд соцветий с укороченной осью. К соцветиям такого типа относятся зонтик, головка и корзинка. Зонтик – соцветие, производное от кисти, но у него все цветоножки и прицветники расположены на верхушке укороченной оси соцветия. Примерами зонтиков могут служить соцветия видов примулы (Primula) и женьшеня (Раnах). Головка представляет собой видоизмененный зонтик, у которого редуцированы цветоножки, а укороченная ось соцветия разрастается. Головка, окруженная оберткой, то есть сближенными верхушечными листьями, известна под названием корзинки. Корзинка характерна для всех представителей семейства сложноцветных.
Сложные ботриоидные соцветия могут быть как открытыми, так и закрытыми. Наиболее обычна метелка, которая представляет собой более или менее разветвленное соцветие с парциальными соцветиями ботриоидной природы. Для метелки характерно постепенное уменьшение степени разветвленности боковых осей от основания к верхушке. Классический пример метелки – метелка некоторых злаков. Метелка характерна для широко культивируемых видов сирени (Syringa) и спиреи иволистной (Spiraea salicifolia). Метелка легко видоизменяется в несколько других типов сложных соцветий, например в сложный щиток и антелу. Сложный щиток представляет собой видоизмененную метелку с укороченными междоузлиями главной оси и сильно развитыми междоузлиями боковых осей. Окончания парциальных соцветий при этом достигают уровня верхушечного (терминального) цветка. У антелы междоузлия боковых осей так сильно удлиняются, что терминальный цветок оказывается на дне воронки, образованной боковыми ответвлениями. Примером сложного щитка может служить соцветие спиреи японской (Spiraea japonica), а антелы – соцветие лабазника обыкновенного (Filipendula vulgaris). Сложная кисть представляет собой соцветие, у которого ботриоидные парциальные соцветия являются простыми кистями. Существуют разные типы сложных кистей. Наиболее обычны двойные (вероника простертая Veronica prostrata) и тройные сложные кисти (верблюжья колючка Alhagi maurorum). Производным от сложной кисти считается сложный колос. У сложного колоса цветки располагаются на боковых осях, то есть они сидячие, и парциальные соцветия представляют собой простые колосья. Как и сложная кисть, сложный колос может быть двойным или тройным. Сложный колос имеют большинство злаков и многие осоковые. Другое производное сложной кисти – сложный зонтик. Он известен по соцветиям представителей семейства зонтичных. Чаще всего сложный зонтик имеет боковые оси двух порядков – первого и второго. Оси первого порядка отходят от верхушки главной оси, а второго – от верхушек осей первого порядка. Парциальные соцветия сложного зонтика, таким образом, представляют простые зонтики и получили у систематиков название зонтичков. Некоторые типы ботриоидных соцветий показаны на рис.
Типы ботриоидных соцветий . А – простые ботриоидные: 1 – кисть, 2 – колос, 3 – початок, 4 – простои зонтик, 5 – головка, 6 – корзинка, 7 – щиток (4. 5, 6 – с укороченной главной осью, прочие – с удлиненной); Б – сложные ботриоидные. Метелка и ее производные:1 – метелка, 2 – сложный щиток, 3 – антела; В – сложные ботриоидные. Сложная кисть и ее производные: 1– тройная кисть, 2 – двойная кисть, 3 – двойной колос, 4 – двойной зонтик
Кроме перечисленных соцветий, существует ряд типов, у которых особенности ветвления главной оси отличаются or особенности ветвления парциальных соцветий – их называют агрегатными. Например, метелка зонтиков – метельчато ветвящееся соцветие, несущее на конечных осях простые зонтики (аралии маньчжурская Aralia mandshurica). Метелка корзинок – метельчато разветвленное соцветие, несущее на конечных осях парциальные соцветия – корзинки. Существуют еще кисть корзинок (череда пониклая Bidens cernua), колос корзинок (сушеница лесная Gnaphalium sylvaticum)
Агрегатные соцветия : 1 – метелка зонтиков, 2 – метелка корзинок, 3 – щиток корзинок, 4 – кисть корзинок, 5 – колос корзинок.
Задание 43.
Проводящие ткани. Особенности строения, расположения проводящих тканей, обеспечивающих восходящий и нисходящий токи в органах растения в связи с выполняемыми функциями.
№ п\п |
Характеристика проводящих элементов |
Проводящие элементы |
||
Ситовидные трубки и клетки спутницы |
сосуды |
трахеиды |
||
1 |
Функция |
Осуществление тока ассимилятов |
Поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли. Передают растворы и в вертикальном, и в горизонтальном направлении. |
|
2 |
Живая ткань или мертвая |
живая |
мертвая |
мертвая |
3 |
Особенности строения |
В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. |
Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. |
Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. |
4 |
Химический состав оболочки |
клеточные стенки – первичные, неодревесневшие |
Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином) |
|
5 |
В какую часть проводящего пучка входит |
флоэма |
ксилема |
ксилема |
6 |
Рисунок в продольном и поперечном разрезах |
Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.
Схема строения и сочетания трахеид (1) и члеников сосуда (2).
Типы тканей |
Комплексные ткани |
|
флоэма |
ксилема |
|
Проводящая |
Ситовидные трубки и клетки-спутницы |
Трахеиды и сосуды |
Механическая |
Флоэмные (лубяные) волокна |
Древесинные волокна (либриформ) |
Основная |
Флоэмная (лубяная) паренхима |
Древесинная паренхима |
Задание 45.
Первичное анатомическое строение корня. Особенности строения и расположения тканей в корнях первичного строения.
№ п\п |
Ткани и особенности их расположения в осевом органе |
Название осевого органа |
1. |
Покровная ткань (эпидерма, эпиблема, пробка) |
Эпиблема (ризодерма) |
2. |
Соотношение первичной коры и центрального цилиндра |
Первичная кора шире центрального цилиндра |
3. |
Характер расположения проводящих пучков |
По окружности |
4. |
Тип проводящих пучков |
Радиальный |
5. |
Наличие сердцевины |
Присутствие сердцевины вообще нетипично для корня, однако в корнях некоторых однодольных в середине находится небольшой участок механической ткани или тонкостенные клетки, возникающие из прокамбия. |