Электронная библиотека

  • Для связи с нами пишите на admin@kursak.net
    • Обратная связь
  • меню
    • Автореферат (88)
    • Архитектура (159)
    • Астрономия (99)
    • Биология (768)
    • Ветеринарная медицина (59)
    • География (346)
    • Геодезия, геология (240)
    • Законодательство и право (712)
    • Искусство, Культура,Религия (668)
    • История (1 078)
    • Компьютеры, Программирование (413)
    • Литература (408)
    • Математика (177)
    • Медицина (921)
    • Охрана природы, Экология (272)
    • Педагогика (497)
    • Пищевые продукты (82)
    • Политология, Политистория (258)
    • Промышленность и Производство (373)
    • Психология, Общение, Человек (677)
    • Радиоэлектроника (71)
    • Разное (1 245)
    • Сельское хозяйство (428)
    • Социология (321)
    • Таможня, Налоги (174)
    • Физика (182)
    • Философия (411)
    • Химия (413)
    • Экономика и Финансы (839)
    • Экскурсии и туризм (29)

Что такое математика. История математики.

Что такое математика. История математики.

Математика – наука о структурах, порядке и отношениях, которая исторически сложилась на основе операций подсчёта, измерения и описания формы объектов. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы.

История математики.

Академиком А. Н. Колмогоровым предложена такая структура истории математики:

1. Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;

2. Период элементарной математики, начинающийся в VI—V веках до н. э. завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);

3. Период математики переменных величин, охватывающий XVII—XVIII века, «который можно условно назвать также периодом „высшей математики“»;

4. Период современной математики — математики XIX—XX века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика:сложение, вычитание, умножение и деление чисел.

Развитие математики опирается на письменность и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных систем счисления. Первые известные записи чисел были найдены в папирусе Ахмеса, созданном египтянами Среднего царства. Инкская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений.

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром. Если же нам надо понять, сколько апельсинов получится, если мы сложим вместе два и три, — то можно абстрагироваться и от формы, оставив у модели только одну характеристику — количество. Абстракция и установление связей между объектами в самом общем виде — одно из главных направлений математического творчества.

Рассмотрим роль математики в химии, медицине и шахматах.

Роль математики в химии

Химия широко использует в своих целях достижения других наук, в первую очередь, физики и математики.

Химики обычно определяют математику упрощенно – как науку о числах. Числами выражаются многие свойства веществ и характеристики химических реакций. Для описания веществ и реакций используют физические теории, в которых роль математики настолько велика, что иногда трудно понять, где физика, а где математика. Отсюда следует, что и химия немыслима без математики.

Математика для химиков – это, в первую очередь, полезный инструмент решения многих химических задач. Очень трудно найти какой-либо раздел математики, который совсем не используется в химии. Функциональный анализ и теория групп широко применяются в квантовой химии, теория вероятностей составляет основу статистической термодинамики, теория графов используется в органической химии для предсказания свойств сложных органических молекул, дифференциальные уравнения – основной инструмент химической кинетики, методы топологии и дифференциальной геометрии применяются в химической термодинамике.

Выражение «математическая химия» прочно вошло в лексикон химиков. Многие статьи в серьезных химических журналах не содержат ни одной химической формулы, зато изобилуют математическими уравнениями.

Симметрия – одно из основных понятий в современной науке. Она лежит в основе фундаментальных законов природы, таких как закон сохранения энергии. Симметрия – очень распространенное явление в химии: практически все известные молекулы либо сами обладают симметрией какого-либо рода, либо содержат симметричные фрагменты. Так что, пожалуй, в химии труднее обнаружить несимметричную молекулу, чем симметричную.

Взаимодействие химиков и математиков не ограничивается решением только химических задач. Иногда и в химии возникают абстрактные задачи, которые приводят даже к появлению новых областей математики

Роль математики в медицине

Недаром многие люди называли математику царицей наук, так как применений этой науки можно найти в любой сфере деятельности человека. Однако ценность математики в таких менее строгих науках как «медицина и биология» – нередко ставится под сомнение. Так как шанс добиться наиболее точных результатов анализов или экспериментов равен нулю. Этот фактор можно объяснить тем, что наш мир в целом очень изменчив, и сложно предугадать, что будет с тем или иным предметом анализа.

Математика в медицине наиболее чаще используется в вопросах моделирования как метод научного анализа. Однако этот метод начал использоваться ещё в древности в таких отраслях как: архитектура, астрономия, физика, биология, и вот с недавних лет – медицина. В настоящее время накоплен очень богатый запас знаний по поводу инфекционных болезней, не только симптоматика, но и течение болезни, результаты фундаментальных анализов, касающиеся механизма взаимодействия антигенов и антител на различном уровне детализации: макроскопическом, микроскопическом, вплоть до генетического уровня. Эти методы исследований позволили подойти к построению математических моделей иммунных процессов.

На этом математика в медицине не останавливается, она также используется в таких узких специальностях как педиатрия, акушерство.

А сколько методов подсчёта существует в ходе употребления антибиотиков. В фармацевтике особенно важна математика. Ведь нужно точно рассчитать, сколько нужно ввести препарата определенному человеку в зависимости от его личных характеристик, и даже сам состав лекарственного вещества нужно рассчитывать, чтобы нигде не ошибиться. Врачи фармацевты ломают себе головы, чтобы найти тот или наиболее выгодный компонент для цепочки формулы любого лекарства.

Роль математики в медицине бесценна, без этой науки (в целом) ничего невозможно, недаром она считается «царицей». Сейчас даже многие авторы пишут книги по поводу математики, о том какой неоценимый вклад был ею сделан.

Роль математики в шахматах

У шахмат и математики много родственного. Выдающийся математик Годфри Харальд Харди заметил однажды, что решение проблем шахматной игры есть не что иное, как математическое упражнение, а сама игра — насвистывание математических мелодий. Формы мышления математика и шахматиста очень близки, и не случайно математики часто бывают способными шахматистами.

Среди крупных ученых, специалистов в области точных наук, известно немало сильных шахматистов, например, математик академик А. А. Марков, механик академик А. Ю. Ишлинский, физик академик, лауреат Нобелевской премии П. Л. Капица.

Шахматы постоянно используются для иллюстрации различных математических понятий и идей. Шахматные примеры и термины можно встретить в литературе, теории игр и т. д. Важ.

Шахматная математика — один из самых популярных жанров занимательной математики, логических игр и развлечений. Впрочем, некоторые шахматно-математические головоломки так сложны, что видные математики разрабатывали для них специальный математический аппарат.

Почти в каждом сборнике олимпиадных математических задач или книге головоломок и математических досугов можно найти красивые и остроумные задачи с участием шахматной доски и фигур. Многие из них имеют интересную историю, привлекали к себе внимание известных ученых.

Шахматы постоянно используются для иллюстрации различных математических понятий и идей. Шахматные примеры и термины можно встретить в литературе, теории игр и т. д. Важное место занимают шахматы в «компьютерной науке».

Без знаний математики невозможно решить многие задачи на шахматной доске. Не усвоив математических знаний трудно понять, что совершается в области математики теперь, в области других наук. Так что роль математики в жизни общества возрастает с каждым днем.

Тема необъятна, читайте еще:

  1. Что такое математика. История математики.
  2. Что такое математика. История математики
  3. Что такое религия и что такое философия?
  4. Реферат по истории математики. «Древнегреческая математика».

Автор: Мариша, 14.12.2015
Рубрики: Математика
Предыдущие записи: Метод Эйлера для решения дифференциальных уравнений
Следующие записи: Гении прошлого

Последние статьи

  • ТОП -5 Лучших машинок для стрижки животных
  • Лучшие модели телескопов стоимостью до 100 долларов
  • ПРЕДУПРЕЖДЕНИЕ ОТКЛОНЕНИЙ РЕЧЕВОГО РАЗВИТИЯ У ДЕТЕЙ РАННЕГО ВОЗРАСТА
  • КОНЦЕПЦИИ РАЗВИТИЯ И ПОЗИЦИОНИРОВАНИЯ СИБИРИ: ГЕОПОЛИТИЧЕСКИЕИ ГЕОЭКОНОМИЧЕСКИЕ АСПЕКТЫ ОЦЕНКИ
  • «РЕАЛИЗМ В ВЫСШЕМ СМЫСЛЕ» КАК ТВОРЧЕСКИЙ МЕТОД Ф.М. ДОСТОЕВСКОГО
  • Как написать автореферат
  • Реферат по теории организации
  • Анализ проблем сельского хозяйства и животноводства
  • 3.5 Развитие биогазовых технологий в России
  • Биологическая природа образования биогаза
Все права защищены © 2015 Kursak.NET. Электронная библиотека : Если вы автор и считаете, что размещённая книга, нарушает ваши права, напишите нам: admin@kursak.net